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Abstract—Existing approaches to Robot Programming by
Demonstration (PbD) require multiple demonstrations to capture
task information that lets robots generalize to unseen situations.
However, providing these demonstrations is cumbersome for end-
users. In addition, users who are not familiar with the system
often fail to demonstrate sufficiently varied demonstrations. We
propose an alternative PbD framework that involves demonstrat-
ing the task once and then providing additional task information
explicitly, through interactions with a visualization of the action.
We present a simple action representation that supports this
framework and describe a system that implements the framework
on a two-armed mobile manipulator. We demonstrate the power
of this system by evaluating it on a diverse task benchmark that
involves manipulation of everyday objects. We then demonstrate
that the system is easy to learn and use for novice users through
a user study in which participants program a subset of the
benchmark. We characterize the limitations of our system in task
generalization and end-user interactions and present extensions
that could address some of the limitations.

I. INTRODUCTION

General-purpose mobile manipulators have the physical
capability to perform a diverse range of useful tasks in human
environments. However, pre-programming these robots for
all potential uses is impossible—every combination of user,
environment and task has different requirements for what the
robot needs to do. Instead, Programming by Demonstration
(PbD) [3] (also known as Learning from Demonstration [2])
techniques aim to enable end-users to program a general-
purpose robot for their specific purposes, by demonstrating
the desired behavior in the context of use.

Existing techniques for PbD require multiple, often many,
demonstrations of the same task. Multiple demonstrations pro-
vide information that allows the robot to generalize learned ac-
tions to unseen situations. Different types of such information
include invariance of certain state variables [10, 11], allowed
variance of certain state variables [5, 6], characteristics of the
task in different parts of the state space [15, 8], relativeness
to objects in the environment [12], segmentations of the task
[12], task constraints [14] or partial-ordering of task steps [13].
To achieve generalizable tasks, these techniques require the
user to provide representative demonstrations that cover the
state space or alternative settings of the environment. However,
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potential users of the system are often unaware of these re-
quirements and are likely to have inaccurate mental models of
how the robot learns from the provided demonstrations. Prior
work in the area of human-robot interaction has demonstrated
that this mismatch of mental models results in datasets that do
not satisfy the system’s requirements for learning generalizable
tasks [1, 16]. Furthermore, these users state that they dislike
having to repeat the same task demonstration [1].

To address these issues, we propose an alternative PbD
framework that involves demonstrating the task only once. The
user provides additional task information explicitly, through
interactions with a visualization of the learned action, rather
than providing additional demonstrations. We propose a simple
yet powerful action representation that supports the learning of
generalizable tasks with this approach by allowing interactive
visualizations of the learned action. We present and evaluate a
system that implements this approach on a two-armed mobile
manipulator. We demonstrate the range of manipulation tasks
that can be achieved with our system and validate its usability
and intuitiveness through a user-study (N=10).

II. APPROACH

A. Action Representation

We represent an action as a sparse sequence of end-effector
states relative to discrete landmarks in the environment. We
denote the nth action as

A
n

= {(✓f , f, g)
k

: k = 1..K}
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potential users of the system are often unaware of these re-
quirements and are likely to have inaccurate mental models of
how the robot learns from the provided demonstrations. Prior
work in the area of human-robot interaction has demonstrated
that this mismatch of mental models results in datasets that do
not satisfy the system’s requirements for learning generalizable
tasks [1, 16]. Furthermore, these users state that they dislike
having to repeat the same task demonstration [1].

To address these issues, we propose an alternative PbD
framework that involves demonstrating the task only once. The
user provides additional task information explicitly, through
interactions with a visualization of the learned action, rather
than providing additional demonstrations. We propose a simple
yet powerful action representation that supports the learning of
generalizable tasks with this approach by allowing interactive
visualizations of the learned action. We present and evaluate a
system that implements this approach on a two-armed mobile
manipulator. We demonstrate the range of manipulation tasks
that can be achieved with our system and validate its usability
and intuitiveness through a user-study (N=10).

II. APPROACH

A. Action Representation

We represent an action as a sparse sequence of end-effector
states relative to discrete landmarks in the environment. We
denote the nth action as
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dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
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is determined by the robot’s current arm config-
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matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing

End-user programming (EUP) is an active research area
that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest

landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over

✓

0
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✓

1
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1
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✓

2
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, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

“save”
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, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

“open”
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, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

“close”
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, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d
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edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

“save”
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, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
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that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
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re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
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simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
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these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over

✓

0
0

✓

1
1

✓

1
2

✓

2
3

`0 (origin)

`1

`2

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest

landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
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that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
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webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
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directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L
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the EUP literature include programming spreadsheets and
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the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
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to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
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these visualizations should be interactive, to allow the user to
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these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L
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available at execution time. This is done through a simple bi-
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Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
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configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
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these visualizations should be interactive, to allow the user to
directly edit components of this representation.
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the current configuration of the landmarks. The desired arm
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formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
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To perform an action A
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and recording their initial configuration. Then the user manip-
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(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
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After an action has been initialized, it can be cleared and
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C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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.
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configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
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tations. For instance, in spreadsheets the user can program
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to robot PbD. To this end, it is important for the system
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these visualizations should be interactive, to allow the user to
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the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
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• Reference frame change: During the initial demon-
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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To perform an action A
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list of current landmarks L
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
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a and L

e. The similarity
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of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

✓

0
0

✓

1
1

✓

1
2

✓

2
3

`0 (origin)

`

0

1

`

0

2

`

0

3

s

⌧ (v2, v
0

3)

L = {`0, . . . , `N}

`

i

= (�, ⌧, v⌧ )

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.
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the user with an accurate mental model of what the system
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tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
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In addition to these edits on the programmed action, we
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cept robot base `0) from the set of available landmarks

✓

0
0

✓

1
1

✓

1
2

✓

2
3

`0 (origin)

`

0

1

`

0

2

L = {`0, . . . , `N}

`

i

= (�, ⌧, v⌧ )

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks

are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. ??), or executed (Sec. ??).

C. Action Editing

End-user programming (EUP) is an active research area
that aims to enable everyday people who are not professional
software developers to create custom programs that meet
their particular needs [? ? ? ]. Commonly studied problems
in the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. ??. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

✓

0
0

✓

1
1

✓

1
2

✓

2
3

`0 (origin)

`

0

1

`

0

2

`

0

3

L = {`0, . . . , `N}

`

i

= (�, ⌧, v⌧ )

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration

of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot

✓

0
0

✓

1
1

✓

1
2

✓

2
3

`0 (origin)

`

0

1

`

0

2

`

0

3

L = {`0, . . . , `N}

`

i

= (�, ⌧, v⌧ )

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration

of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot



ACTION EXECUTION
✓

0
0

✓

1
1

✓

1
2

✓

2
3

`0 (origin)

`1

`2

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest

landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over

✓

0
0

✓

1
1

✓

1
2

✓

2
3

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

✓

0
0

✓

1
1

✓

1
2

✓

2
3

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

✓

0
0

✓

1
1

✓

1
2

✓

2
3

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the

✓

0
0

✓

1
1

✓

1
2

✓

2
3

, where ✓

f 2 SE(3) represents the robot’s 6 Degree-of-
Freedom (DoF) end-effector configuration (translation and
rotation) in the frame of reference f 2 {`0, .., `

N

d}, which
can be any of the N

d available landmarks (including the robot
base `0). g 2 {0, 1} represents its binary gripper state (open
or closed). We represent landmarks in the environment as a
tuple `

i

= (�, ⌧, v⌧ ), where � 2 SE(3) is the last recorded
configuration of the landmark in the robot’s coordinate frame,
⌧ 2 S

⌧ is the type of the landmark and v

⌧ 2 Rd

⌧

is a type-
dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
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list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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, where ✓
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d}, which
can be any of the N
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⌧ is the type of the landmark and v
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dependent descriptor of the landmark consisting of a vector of
reals.

B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
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end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
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and recording their initial configuration. Then the user manip-
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is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
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(empirically determined),
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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edit

.
• Delete pose: The user can remove action states that were
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
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(empirically determined),
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be absolute. Otherwise, the frame of reference is the nearest
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f is computed by transforming
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. ??), or executed (Sec. ??).

C. Action Editing

End-user programming (EUP) is an active research area
that aims to enable everyday people who are not professional
software developers to create custom programs that meet
their particular needs [? ? ? ]. Commonly studied problems
in the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. ??. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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To perform an action A
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the robot first accumulates the
list of current landmarks L
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).
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that aims to enable everyday people who are not professional
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the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-
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demonstration the user can change the reference frame
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution
To perform an action A
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list of current landmarks L
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involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)
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is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
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the pose is considered to be relative. The robot’s relative
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✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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In addition to these edits on the programmed action, we
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• Delete landmark: The user can remove landmarks (ex-
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To perform an action A
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then needs to perform a rigid registration between landmarks
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
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B. Action Initialization by Demonstration
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involves directly adding action states (✓f , f, g)
t

into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `

N

d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
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is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
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are within a certain threshold d
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(empirically determined),
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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from the graph until all landmarks L
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of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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(controlled by the human) and the configuration
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
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of the action are
registered. If at least one landmark in L
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `
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and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
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(empirically determined),
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the robot’s coordinate frame, i.e., the pose is considered to
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i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
of the landmarks in L
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f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. ??), or executed (Sec. ??).

C. Action Editing

End-user programming (EUP) is an active research area
that aims to enable everyday people who are not professional
software developers to create custom programs that meet
their particular needs [? ? ? ]. Commonly studied problems
in the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. ??. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
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In addition to these edits on the programmed action, we
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• Delete landmark: The user can remove landmarks (ex-
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To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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and the set of landmarks L
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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⌧ ! R. The algorithm
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of the action are
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the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
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configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
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After an action has been initialized, it can be cleared and
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C. Action Editing
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that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution
To perform an action A

n

the robot first accumulates the
list of current landmarks L
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software developers to create custom programs that meet their
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webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.
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In addition to these edits on the programmed action, we
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
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of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
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of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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in the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
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using inverse kinematics (IK). If there is at least one pose that
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To perform an action A
n
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
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• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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To perform an action A
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list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
n
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
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To perform an action A
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list of current landmarks L
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
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of the action are
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the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
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involves directly adding action states (✓f , f, g)
t
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action by demonstrating each state. Before a demonstration,
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and recording their initial configuration. Then the user manip-
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at chosen configurations. At any time, the current action state
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are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
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in the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
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tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
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the action representation described in Sec. ??. Furthermore,
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• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd

⌧ ⇥ Rd

⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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however, more complex functions require the user to edit the
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to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
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and recording their initial configuration. Then the user manip-
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The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
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be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
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of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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To perform an action A
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the robot first accumulates the
list of current landmarks L
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then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
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proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
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re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
registered. If at least one landmark in L
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
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directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
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stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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To perform an action A
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list of current landmarks L

e = {`0, . . . , `Ne}. The robot
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B. Action Initialization by Demonstration
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involves directly adding action states (✓f , f, g)
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action by demonstrating each state. Before a demonstration,
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d =
{`0, . . . , `
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and recording their initial configuration. Then the user manip-
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uration ⇣
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d (fixed at the start of demonstration).
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-
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To perform an action A

n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
n
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L
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and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
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uration ⇣

t

(controlled by the human) and the configuration
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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of the action are
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remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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B. Action Initialization by Demonstration
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into the
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the robot accumulates the list of potential landmarks L

d =
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and recording their initial configuration. Then the user manip-
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
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In addition to these edits on the programmed action, we
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D. Action Execution

To perform an action A
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the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L
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d referenced in A
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available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L
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between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s
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of the action are
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the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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B. Action Initialization by Demonstration
Actions are initialized with a single demonstration. This

involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
{`0, . . . , `
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and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
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is determined by the robot’s current arm config-
uration ⇣
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(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
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that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
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and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L
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of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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involves directly adding action states (✓f , f, g)
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into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks L

d =
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
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is determined by the robot’s current arm config-
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(controlled by the human) and the configuration
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d (fixed at the start of demonstration).
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After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing
End-user programming (EUP) is an active research area

that aims to enable everyday people who are not professional
software developers to create custom programs that meet their

particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)
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of a learned action A
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.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
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In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L
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D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in L

a and L

e. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function s

⌧ (v1, v2) over
the landmark descriptors; s : Rd
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⌧ ! R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks L

a

of the action are
registered. If at least one landmark in L

a

remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
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d} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(✓f , f, g)

t

is determined by the robot’s current arm config-
uration ⇣

t

(controlled by the human) and the configuration
of the landmarks in L

d (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks

are within a certain threshold d

max

(empirically determined),
then f = `0 = (�0, robot, null) where �0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `

i

for i = argmin
i21..Nd d(✓`0 ,�

i

) and
the pose is considered to be relative. The robot’s relative
end-effector configuration ✓

f is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., T

✓

f = T�1
�

T
✓

`0 , where T
✓

is the transformation
matrix corresponding to the configuration ✓.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. ??), or executed (Sec. ??).

C. Action Editing

End-user programming (EUP) is an active research area
that aims to enable everyday people who are not professional
software developers to create custom programs that meet
their particular needs [? ? ? ]. Commonly studied problems
in the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. ??. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (✓f , f, g)

k

of a learned action A
n

.
• Reference frame change: During the initial demon-

stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f  f

edit

2 L

d

.
• Transformation of configuration: The user can directly

edit the configuration of saved action states; ✓f  ✓

edit

.
• Delete pose: The user can remove action states that were

saved during the demonstration; A
n

 A
n

\(✓f , f, g)
edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:

• Delete landmark: The user can remove landmarks (ex-
cept robot base `0) from the set of available landmarks
that are considered part of the learned action; L

d

 
L

d

\`
edit

D. Action Execution

To perform an action A
n

the robot first accumulates the
list of current landmarks L

e = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
L

a ⇢ L

d referenced in A
n

and the set of landmarks L

e
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For each action, please enter your estimate of how likely the fixed version 
of the action will succeed in achieving the intended goal 

(0: You are sure that it will fail, 100: You are sure that it will succeed).

uid:____
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WORKER

1 23 5 4



Reachability
(100 scenarios / action)

METRICS

✓
✓ ✗

Success
(10 scenarios / action)

✓

✗



• Directions, videos, ~45 minutes of work

• 31 people x 15 demonstrations each            
= 465 demonstrations in total

• Metrics

• reachability   (100 scenarios / action)

• success        (10 scenarios / action)
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FINDINGS: REACHABILITY
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FINDINGS: CROWD LEARNING



FINDINGS: CROWD SCORING



• Reachability improves with more data

• Achieved >= 70% on success metric

• Choice of score function is difficult, 
important

• Crowd learns

• Need coarser-grained crowd rating system

FINDINGS



• No automatic success testing

• Difficult UI

• Crowd data collected in batch mode

• Not real crowdsourcing

LIMITATIONS



• Goal: Improve generalizability of actions in 
robot programming by demonstration

• Instance-based active learning

• Crowdsourced ~450 demonstrations

• Improved task reachability and success

SUMMARY
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