# Robot Programming by Demonstration with **Crowdsourced Action Fixes**









Maxwell Forbes Michael Chung Maya Cakmak Rajesh P. N. Rao UNIVERSITY OF WASHINGTON

Human Computation & Crowdsourcing 2014, Pittsburgh, PA

#### VISION

#### general-purpose robots that can be **programmed by their end-users**, in the context of use

### WHY? unbounded use cases



. . .

#### WHY?

#### unique preferences and needs



H. Evans mute, quadriplegic



O. Benjelloun BMCE bank chairman

### WHY? simpler engineering challenge



#### PROGRAMMING BY DEMONSTRATION



Cakmak & Takayama, HRI 2014

ACTION REPRESENTATION  $\mathcal{A}_n = \{(\theta^f, f, g)_k : k = 1..K\}$ End-effector pose (6-D $\phi$ F) gripper state reference frame of landmark findex of the reference frame of landmark  $L = \{\ell_0, \ldots, \ell_N\}$  $\ell_i = (\phi, \tau, v^\tau)$ Origin Landmark poset for Redescriptor relative to robot origin

#### ACTION REPRESENTATION



#### ACTION REPRESENTATION



#### ACTION EXECUTION



#### ACTION EXECUTION



#### SIMPLETASK



#### MORE DIVERSETASKS





 $\theta_2^1$ 

 $\theta_3$ 

 $\theta_1^1$ 

×



(origin)

 $\theta_2^1$ 

 $\theta_3$ 

 $\theta_1^1$ 

×



(origin)

 $\theta_2^1$ 

 $\theta_1^1$ 

×



(origin)

 $\theta_3$ 

 $\theta_2^1$ 

 $\theta_3$ 

 $\theta_1^1$ 

×



(origin)

## OBJECTIVES

- Improve range of actions
- Impose no additional requirements on users

#### APPROACH

- I. Start with a single demonstration
- 2. Instance-based active learning
- 3. Crowdsource additional demonstrations

#### APPROACH

- I. Start with a single demonstration
- 2. Instance-based active learning
- 3. Crowdsource additional demonstrations

## ADDITIONAL DEMONSTRATIONS





## ADDITIONAL DEMONSTRATIONS

 $\theta_1$  $\theta_1$  $\theta_2^1$ 

(origin)

## IMPLEMENTATION

I. Collect single demonstration of three actions

#### THREE ACTIONS



## IMPLEMENTATION

I. Collect single demonstration of three actions

## IMPLEMENTATION

- I. Collect single demonstration of three actions
- 2. Filtered random sampling for active learning





Trobot facing table



Trobot facing table





T robot facing table



Trobot facing table



T robot facing table

## FILTERED RANDOM SAMPLING



## IMPLEMENTATION

- I. Collect single demonstration of three actions
- 2. Filtered random sampling for active learning

## IMPLEMENTATION

- I. Collect single demonstration of three actions
- 2. Filtered random sampling for active learning
- 3. Collect and process data
  - GUI

#### GUI

#### If time, make slide about color coding of grippers.

## GUI



## IMPLEMENTATION

- I. Collect single demonstration of three actions
- 2. Filtered random sampling for active learning
- 3. Collect and process data
  - GUI

## IMPLEMENTATION

- I. Collect single demonstration of three actions
- 2. Filtered random sampling for active learning
- 3. Collect and process data
  - GUI
  - Score functions

### SCORE FUNCTIONS

I. Crowd confidence

 $s_o\left(\mathcal{D}_i\right) = conf(\mathcal{D}_i)$ 00 80

## SCORE FUNCTIONS



## SCORE FUNCTIONS



#### APPROACH

#### I. Actions



#### 2. Active learning

 $s_{0}(\mathcal{P}_{i}) = conf(\mathcal{P}_{i})$   $s_{0}(\mathcal{P}_{i}) = 1/\{\sum_{j=1}^{N} \frac{|\theta_{j,j}^{f} - \theta_{j,j}^{f}|}{|\theta_{j,j}^{f}|}\}$   $s_{0}(\mathcal{P}_{i}) = 1/\{\sum_{j=1}^{N} \frac{|\theta_{j,j}^{f} - \theta_{j,j}^{f}|}{|\theta_{j,j}^{f}|}\}$   $s_{0}(\mathcal{P}_{i}) = 1/\{\sum_{j=1}^{N} \frac{|\theta_{j,j}^{f} - \theta_{j,j}^{f}|}{|\theta_{j,j}^{f}|}\}$   $s_{0}(\mathcal{P}_{i}) = 1/\{\sum_{j=1}^{N} \frac{|\theta_{j,j}^{f} - \theta_{j,j}^{f}|}{|\theta_{j,j}^{f}|}\}$ 

()

3. Crowd data

#### Part 1

- Thank you for participating in our study.
- This is Rosie the Robot.
- The goal of our research is to enable everyday people to program new actions on general purpose robots like this one, so that it doesn't need to be preprogrammed for every possible action users might need.
- An intuitive way to program the robot is to just demonstrate the desired action.
- So in our previous research we have had people come in and program new actions by physically moving the robot's arms and using simple commands.
- This is called programming by demonstration.
- The way that it works is: the person saves a sequence of hand poses and then the robot moves its arms to go through those poses.
- Some poses are attached to objects so that the action will work even when the objects move around.
- Here is a video that explains this system.
- Have them watch the PbD intro video (you might want to narrate as you go): https://www.youtube.com/watch?v=Eo7r0ex3JT0

#### Part 2

- As you saw in the video, sometimes Rosie is not able to perform the actions that it was programmed to do correctly.
- This can happen when the objects are moved around.
- But as shown in the video you can **edit the programmed action** through the user interface to make it feasible in that scenario.
- That's exactly what we'll ask you to do today.
- Rosie has already learned three different actions but it automatically found some scenarios in which it is unable to perform each action.
- So you will go in and fix the action to work in those scenarios.
- We have a newer version of this interface

#### Part 1

- Thank you for participating in our study.
- This is Rosie the Robot.
- The goal of our research is to enable everyday people to program new actions on general purpose robots like this one, so that it doesn't need to be preprogrammed for every possible action users might need.
- An intuitive way to program the robot is to just demonstrate the desired action.
- So in our previous research we have had people come in and program new actions by physically moving the robot's arms and using simple commands.
- This is called programming by demonstration.
- The way that it works is: the person saves a sequence of hand poses and then the robot moves its arms to go through those poses.
- Some poses are attached to objects so that the action will work even when the objects move around.
- Here is a video that explains this system.
- Have them watch the PbD intro video (you might want to narrate as you go): <u>https://www.youtube.com/watch?v=Eo7r0ex3JT0</u>

#### Part 2

- As you saw in the video, sometimes Rosie is not able to perform the actions that it was programmed to do correctly.
- This can happen when the objects are moved around.
- But as shown in the video you can **edit the programmed action** through the user interface to make it feasible in that scenario.
- That's exactly what we'll ask you to do today.
- Rosie has already learned three different actions but it automatically found some scenarios in which it is unable to perform each action.
- So you will go in and fix the action to work in those scenarios.
- We have a new a version of this interface



#### Part 1

- Thank you for participating in our study.
- This is Rosie the Robot.
- The goal of our research is to enable everyday people to program new actions on general purpose robots like this one, so that it doesn't need to be preprogrammed for every possible action users might need.
- An intuitive way to program the robot is to just demonstrate the desired action.
- So in our previous research we have had people come in and program new actions by physically moving the robot's arms and using simple commands.
- This is called programming by demonstration.
- The way that it works is: the person saves a sequence of hand poses and then the robot moves its arms to go through those poses.
- Some poses are attached to objects so that the action will work even when the objects move around.
- Here is a video that explains this system.
- Have them watch the PbD intro video (you might want to narrate as you go): <u>https://www.youtube.com/watch?v=Eo7r0ex3JT0</u>

#### Part 2

- As you saw in the video, sometimes Rosie is not able to perform the actions that it was programmed to do correctly.
- This can happen when the objects are moved around.
- But as shown in the video you can **edit the programmed action** through the user interface to make it feasible in that scenario.
- That's exactly what we'll ask you to do today.
- Rosie has already learned three different actions but it automatically found some scenarios in which it is unable to perform each action.
- So you will go in and fix the action to work in those scenarios.









#### METRICS

# Reachability (100 scenarios / action)

# Success (10 scenarios / action)











- Directions, videos, ~45 minutes of work
- 31 people x 15 demonstrations each = 465 demonstrations in total
- Metrics
  - reachability (100 scenarios / action)
  - success (10 scenarios / action)

### FINDINGS: REACHABILITY









#### FINDINGS: SUCCESS



## FINDINGS CROWD EFFECTIVENESS



## FINDINGS: CROWD LEARNING



## FINDINGS: CROWD SCORING



### FINDINGS

- Reachability improves with more data
- Achieved >= 70% on success metric
- Choice of score function is difficult, important
- Crowd learns
- Need coarser-grained crowd rating system

## LIMITATIONS

- No automatic success testing
- Difficult UI
- Crowd data collected in batch mode
- Not real crowdsourcing

### SUMMARY

- Goal: **Improve generalizability** of actions in robot programming by demonstration
- Instance-based active learning
- Crowdsourced ~450 demonstrations
- Improved task reachability and success

### Thank you

Maxwell Forbes | mbforbes Michael Chung | mjyc Maya Cakmak | mcakmak Rajesh P. N. Rao | rao