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m general-purpose robots that can be programmed
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. by their end-users, in the context of use
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unbounded use cases
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unique preferences and needs
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simpler engineering challenge

robot that can do robot that can do
everything a few things

InN one context

everywhere
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ACTION REPRESENTATION
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SIMPLE TASK
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PROBLEM: GENERALIZATION
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OBJECTIVES

* Improve range of actions

* Impose no additional requirements on
users




APPROACH

|, Start with a single demonstration
2. Instance-based active learning

3. Crowdsource additional demonstrations
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ADDITIONAL DEMONSTRATIONS
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IMPLEMENTATION

|. Collect single demonstration of three
actions



THREE ACTIONS




IMPLEMENTATION

|. Collect single demonstration of three
actions



IMPLEMENTATION

. Collect single demonstration of three
actions

. Filtered random sampling for active
learning
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FILTERED RANDOM SAMPLING
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IMPLEMENTATION

|, Collect single demonstration of three
actions

2. Filtered random sampling for active
earning

3. Collect and process data

- GUI



GUI

It time, make slide about color coding of grippers.
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IMPLEMENTATION

|, Collect single demonstration of three
actions

2. Filtered random sampling for active
earning

3. Collect and process data
- GUI

* Score functions



SCORE FUNCTIONS

|. Crowd confidence
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SCORE FUNCTIONS

2. Seed distance
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SCORE FUNCTIONS

3. Compactness
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APPROACH

|. Actions

2. Active learning

o= 1085 — 01, 0!
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3. Crowd data




EVALUATION

Part1

e Thank you for participating in our study.

e This is Rosie the Robot.

e The goal of our research is to enable everyday people to program new actions
on general purpose robots like this one, so that it doesn’t need to be
preprogrammed for every possible action users might need.

An intuitive way to program the robot is to just demonstrate the desired action.
So in our previous research we have had people come in and program new
actions by physically moving the robot’s arms and using simple commands.

e This is called programming by demonstration.

e The way that it works is: the person saves a sequence of hand poses and then
the robot moves its arms to go through those poses.

e Some poses are attached to objects so that the action will work even when the
objects move around.

Here is a video that explains this system.
Have them watch the PbD intro video (you might want to narrate as you go):
https://www.youtube.com/watch?v=Eo7r0ex3]T0

Part 2

e Asyou saw in the video, sometimes Rosie is not able to perform the actions that
it was programmed to do correctly.
This can happen when the objects are moved around.
But as shown in the video you can edit the programmed action through the
user interface to make it feasible in that scenario.

e That’s exactly what we’ll ask you to do today.

e Rosie has already learned three different actions but it automatically found
some scenarios in which it is unable to perform each action.

e So you will go in and fix the action to work in those scenarios.
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Pick and Place

Action1 Action2 Action3 Action4 Action5

Constrained Pick and Place

Action6 Action7 Action8 Action9 Action10










METRICS

Reachability SUCCESS
(100 scenarios / action) (10 scenarios / action)




EVALUATION

« Directions, videos, ~45 minutes of work

- 3| people x |5 demonstrations each

= 465 demonstrations in total

« Metrics

» reachability (100 scenarios / action)

* SUCCESS (10 scenarios / action)
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FINDINGS CROWD EFFECTIVENESS
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FINDINGS: CROWD LEARNING
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FINDINGS: CROWD SCORING
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FINDINGS

» Reachability improves with more data

« Achieved >= 70% on success metric

« Choice of score function is difficult,
important

« Crowd learns

- Need coarser-grained crowd rating system



LIMITATIONS

- No automatic success testing

» Difficult Ul

« Crowd data collected in batch mode

» Not real crowdsourcing



SUMMARY

» Goal: Improve generalizability of actions In
robot programming by demonstration

Instance-based active learning

« Crowdsourced ~450 demonstrations

Improved task reachability and success
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