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Neural Naturalist: Generating Fine-Grained Image Comparisons

Anonymous EMNLP-IJCNLP submission

Abstract

We introduce the new Birds-to-Words dataset
of 41k sentences describing fine-grained dif-
ferences between photographs of birds. The
language collected is highly detailed, while
remaining understandable to the everyday
observer (e.g., “heart-shaped face,” “squat
body”). Paragraph-length descriptions natu-
rally adapt to varying levels of taxonomic and
visual distance—drawn from a novel strati-
fied sampling approach—with the appropriate
level of detail. We propose a new model called
Neural Naturalist that uses a joint image en-
coding and comparative module to generate
comparative language, and evaluate the results
with humans who must use the descriptions to
distinguish real images.

Our results indicate promising potential for
neural models to explain differences in visual
embedding space using natural language, as
well as a concrete path for machine learning to
aid citizen scientists in their effort to preserve
biodiversity.

1 Introduction

Humans are adept at making fine-grained compar-
isons, but sometimes require aid in distinguishing
visually similar classes. Take, for example, a cit-
izen science effort like iNaturalist,1 where every-
day people photograph wildlife, and the commu-
nity reaches a consensus on the taxonomic label
for each instance. Many species are visually simi-
lar (e.g., Figure 1), making them difficult for a ca-
sual observer to label correctly. This puts an undue
strain on lieutenants of the citizen science commu-
nity to curate and justify labels for a large number
of instances. While everyone may be capable of
making such distinctions visually, non-experts re-
quire training to know what to look for.

1https://www.inaturalist.org

“Animal 2 looks smaller and has a stouter, darker bill than Animal 
1. Animal 2 has black spots on its wings. Animal 2 has a black 
hood that extends down onto its breast, and the rest of its breast is 
white with orange only on its sides. In comparison, Animal 1’s 
breast is entirely orange.”

“Animal 2 is brightly red-colored all over, except for a black oval 
around its beak. Animal 1 has more muted red and grey colors.”
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Animal 1 Animal 1

Animal 2 Animal 2

Animal 2 Animal 2
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Figure 1: The Birds-to-Words dataset: comparative de-
scriptions adapt naturally to the appropriate level of de-
tail (orange underlines). A difficult distinction (TOP) is
given a longer and more fined-grained comparison than
an easier one (BOTTOM). Annotators organically use
everyday language to refer to parts (green highlights).

Field guides exist for the purpose helping peo-
ple learn how to distinguish between species. Un-
fortunately, field guides are costly to create be-
cause writing such a guide requires expert knowl-
edge of class-level distinctions.

In this paper, we study the problem of ex-
plaining the differences between two images us-
ing natural language. We introduce a new dataset
called Birds-to-Words 2 of paragraph-length de-
scriptions of the differences between pairs of bird
photographs. We find several benefits from elic-
iting comparisons: (a) without a guide, annota-

2We will release this dataset upon publication.



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Confidential Review Copy. DO NOT DISTRIBUTE.

tors naturally break down the subject of the image
(e.g., a bird) into pieces understood by the every-
day observer (e.g., head, wings, legs); (b) by sam-
pling comparisons from varying visual and taxo-
nomic distances, the language exhibits naturally
adaptive granularity of detail based on the dis-
tinctions required (e.g., “red body” vs “tiny stripe
above its eye”); (c) in contrast to requiring com-
parisons between categories (e.g., comparing one
species vs. another), non-experts can provide high-
quality annotations without needing domain ex-
pertise.

We also propose the Neural Naturalist model
architecture for generating comparisons given two
images as input. After embedding images into a
latent space with a CNN, the model combines the
two image representations with a joint encoding
and comparative module before passing them to a
Transformer decoder. We find that introducing a
comparative module—an additional Transformer
encoder—over the combined latent image repre-
sentations yields better generations.

Our results suggest that these classes of neural
models can assist in fine-grained visual domains
when humans require aid to distinguish closely
related instances. Non-experts—such as amateur
naturalists trying to tell apart two species—stand
to benefit from comparative explanations. Our
work approaches this sweet-spot of visual exper-
tise, where any two in-domain images can be com-
pared, and the language is detailed, adaptive to
the types of differences observed, and still under-
standable by laypeople.

Recent work has made impressive progress on
context sensitive image captioning. One direction
of work uses class labels as context, with the ob-
jective of generating captions that distinguish why
the image belongs to one class over others (Hen-
dricks et al., 2016; Vedantam et al., 2017). An-
other choice is to use a second image as context,
and generate a caption that distinguishes one im-
age from another. Previous work has studied ways
to generalize single-image captions into compar-
ative language (Vedantam et al., 2017), as well
as comparing two images with high pixel overlap
(e.g., surveillance footage) (Jhamtani and Berg-
Kirkpatrick, 2018). Our work complements these
efforts by studying directly comparative, everyday
language on image pairs with no pixel overlap.

Our approach outlines a new way for models
to aid humans in making visual distinctions. The

genus genus

order order

pivot pivot
…

…

…

increasing visual and taxonom
ic distance

sampling cut off
at taxonomic CLASS

pivot species
sampled subtree

too distant

species species

visual visual

Figure 2: Illustration of pivot-branch stratified sam-
pling algorithm used to construct the Birds-to-
Words dataset. The algorithm harnesses visual and
taxonomic distances (increasing vertically) to create a
challenging task with board coverage.

Neural Naturalist model requires two instances as
input; these could be, for example, a query image
and an image from a candidate class. By differ-
entiating between these two inputs, a model may
help point out subtle distinctions (e.g., one animal
has spots on its side), or features that indicate a
good match (e.g., only a slight difference in size).
These explanations can aid in understanding both
differences between species, as well as variance
within instances of a single species.

2 Birds-to-Words Dataset

Our goal is to collect a dataset of tuples (i1, i2, t),
where i1 and i2 are images, and t is a natural lan-
guage comparison between the two. Given a do-
main D, this collection depends critically on the
criteria we use to select image pairs.

If we sample image pairs uniformly at random,
we will end up with comparisons encompassing
a broad range of phenomena. For example, two
images that are quite different will yield categor-
ical comparisons (“One is a bird, one is a mush-
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Images
Dataset Domain Lang Ctx Cap Example

CUB Captions
(R, 2016)

Birds M 1 1 “An all black bird with a very long rectrices and relatively dull
bill.”

CUB-Justify
(V, 2017)

Birds S 7 1 “The bird has white orbital feathers, a black crown, and yellow
tertials.”

Spot-the-Diff
(J&B, 2018)

Surveilance E 2 1–2 ”Silver car is gone. Person in a white t shirt appears. 3rd person
in the group is gone.”

Birds-to-Words
(this work)

Birds E 2 2 “Animal1 is gray, while animal2 is white. Animal2 has a long,
yellow beak, while animal1’s beak is shorter and gray. Animal2
appears to be larger than animal1.”

Table 1: Comparison with recent fine-grained language-and-vision datasets. Lang values: S = scientific, E =
everyday, M = mixed. Images Ctx = number of images shown, Images Cap = number of images described in
caption. Dataset citations: R = Reed et al., V = Vedantam et al., J&B = Jhamtani and Berg-Kirkpatrick.

room.”). Alternatively, if the two images are very
similar, such as two angles of the same creature,
comparisons between them will focus on highly
detailed nuances, such as variations in pose. These
phenomena support rich lines of research, such as
object classification (Deng et al., 2009) and pose
estimation (Murphy-Chutorian and Trivedi, 2009).

We aim to land somewhere in the middle. We
wish to consider sets of distinguishable but inti-
mately related pairs. This sweet spot of visual
similarity is akin to the genre of differences stud-
ied in fine-grained visual classification (Wah et al.,
2011; Krause et al., 2013). We approach this col-
lection with a two-phase data sampling procedure.
We first select pivot images by sampling from our
full domain uniformly at random. We then branch
from these images into a set of secondary im-
ages that emphases fine-grained comparisons, but
yields broad coverage over the set of sensible re-
lations. Figure 2 provides an illustration of our
sampling procedure.

2.1 Domain
We sample images from iNaturalist, a citizen sci-
ence effort to collect research-grade3 observations
of plants and animals in the wild. We restrict
our domain D to instances labeled under the taxo-
nomic CLASS4 Aves (i.e., birds). While a broader
domain would yield some comparable instances
(e.g., bird and dragonfly share some common body
parts), choosing only Aves ensures that all in-

3Research-grade observations have met or exceeded iNat-
uralist’s guidelines for community consensus of the taxo-
nomic label for a photograph.

4To disambiguate class, we use CLASS to denote the tax-
onomic rank in scientific classification, and simply “class” to
refer to the machine learning usage of the term as a label in
classification.

Birds-to-Words

Birds-to-Words Dataset

Image pairs 3,347
Paragraphs / pair 4.8
Paragraphs 16,067
Tokens / paragraph 32.1 MEAN

Sentences 40,969
Sentences / paragraph 2.6 MEAN

Clarity rating ≥ 4/5
Train / dev / test 80% / 10% / 10%

Figure 3: Annotation lengths for compared datasets
(TOP), and statistics for the proposed Birds-to-
Words dataset (BOTTOM). The Birds-to-Words dataset
has a large mass of long descriptions in comparison to
related datasets.

stances will be similar enough structurally to be
comparable, and avoids the gut reaction compar-
ison pointing out the differences in animal type.
This choice yields 1.7M research-grade images
and corresponding taxonomic labels from iNatu-
ralist. We then perform pivot-branch sampling on
this set to choose pairs for annotation.

2.2 Pivot Images

The Aves domain in iNaturalist contains instances
of 9k distinct species, with heavy observation bias
to more common species (such as the mallard
duck). We uniformly sample species from the set
of 9k to help overcome this bias. In total, we select
405 species and corresponding photographs to use
as i1 images.
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Figure 4: The proposed Neural Naturalist model architecture. The multiplicative joint encoding and Transformer-
based comparative module yield the best comparisons between images.

2.3 Branching Images

We use both a visual similarity measure and tax-
onomy to sample a set of comparison images i2
branching off from each pivot image i1. We use a
branching factor of k = 12 from each pivot image.

To capture visually similar images to i1, we
employ a similarity function V(i1, i2). We use
an Inception-v4 (Szegedy et al., 2017) network
pretrained on ImageNet (Deng et al., 2009) and
then fine-tuned to perform species classification
on all research-grade observations in iNaturalist.
We take the embedding for each image from the
last layer of the network before the final softmax.
We perform a k-nearest neighbor search by quan-
tizing each embedding and using L2 distance (Wu
et al., 2017; Guo et al., 2016), selecting the kv = 2
closest images in embedding space.

We also use the iNaturalist scientific taxonomy
T (D) to sample images at varying levels of taxo-
nomic distance from i1. We select kt = 10 tax-
onomically branched images by sampling two im-
ages each from the same SPECIES (` = 1), GENUS,
FAMILY, ORDER, and CLASS (` = 5) as c. This
yields 4,860 raw image pairs (i1, i2).

2.4 Language Collection

For each image pair (i1, i2), we elicit five natu-
ral language paragraphs describing the differences
between them. An annotator is instructed to write
a paragraph (usually 2–5 sentences) comparing
and contrasting the animal appearing in each im-

age. We instruct annotators not to explicitly men-
tion the species (e.g., “Animal 1 is a penguin”),
and to instead focus on visual details (e.g., “Ani-
mal 1 has a black body and a white belly”). They
are additionally instructed to avoid mentioning as-
pects of the background, scenery, or pose captured
in the photograph (e.g., “Animal 2 is perched on a
coconut”).

We discard all annotations for an image pair
where either image did not have at least 4

5 pos-
itive ratings of image clarity. This yields a to-
tal of 3,347 image pairs, annotated with 16,067
paragraphs. Detailed statistics of the Birds-to-
Words dataset are shown in Figure 3, and exam-
ples are provided in Figure 5. Further details of
our algorithmic approach to image pair selection
are given in the supplementary material.

3 Neural Naturalist Model

Recent image captioning approaches (Xu et al.,
2015; Sharma et al., 2018) extract image fea-
tures using a convolutional neural network (CNN)
which serve as input to a language decoder, typi-
cally a recurrent neural network (RNN) (Mikolov
et al., 2010) or Transformer (Vaswani et al., 2017).
We extend this paradigm with a joint encoding
step and comparative module to study how best to
encode and transform multiple latent image em-
beddings. A schematic of the model is outlined in
Figure 4, and its key components are described in
the upcoming sections.
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animal1 is a dull yellow with grey tail 
feathers while animal2 is a yellow-green

animal1 has dark orange claws , while animal2 
has grey claws . animal1 has yellow coloring 
with black on the top of the head and in tiny 
wing patches . animal2 is mostly green with 
red on the neck and brown on the wings .

MM

GG

Animal 1 Animal 1Animal 2 Animal 2Animal 2 Animal 2Animal 1 Animal 1
animal1 is two - toned brown with a 
white patch on its head . animal2 is multi 
- colored with longer tail feathers .

animal1 is brown and white with a 
squatty body with a light brown head . 
animal2 is multi - colored with a light 
blue and black head .

MM

GG

animal1 is white with brown wings 
while animal2 is yellow with black 
head
animal1 has a long dark tail and 
flecked dark wings with a white 
curved beak . animal2 has a shorter 
beak and a yellow breast and head 
with a shorter brown tail .

MM

GG

animal1 is brown with black spots on the 
body while animal2 is tan with a white 
neck and black head

animal1 is brown and white with a long 
yellow and brown beak . animal2 is 
gray with a short light pink beak .

MM

GG

Animal 2 Animal 2Animal 1 Animal 1 Animal 1 Animal 1Animal 2 Animal 2

animal2 ' s colors are brighter than animal1 . 
animal2 has more earthy colors than animal1 . 
animal1 is a bit bigger than animal2 .

both animals appear to be the same .

MM

GG

Animal 1 Animal 1Animal 2 Animal 2
animal2 has a heart shaped face , whereas animal1 
has an oval face . animal2 has entirely dark eyes . 
animal2 has a white beak , whereas animal1 has a 
dark beak . animal2 has more white in its feathers .

animal1 has yellow eyes . animal2 has black eyes . 
animal2 is lighter in color than animal1 . animal2 
has a heart shaped face . animal1 doesn ' t .

MM

GG

Animal 1 Animal 1Animal 2 Animal 2

Figure 5: Samples from the dev split of the proposed Birds-to-Words dataset, along with Neural Naturalist model
output (M) and one of the five ground truth paragraphs (G). The second row shows failure cases, highlighted in
red.

3.1 Image Embedding

Both input images are first processed using CNNs
with shared weights. In this work, we con-
sider ResNet (He et al., 2016) and Inception-v4
(Szegedy et al., 2017) architectures. In both cases,
we extract the representation from the deepest
layer immediately before the classification layer.
This yields a dense 2D grid of local image feature
vectors, shaped (d, d, f). We then flatten each fea-
ture grid into a (d2, f) shaped matrix:

E1 = 〈e11,1, . . . , e1d,d〉 = CNN(i1)

E2 = 〈e21,1, . . . , e2d,d〉 = CNN(i2)

3.2 Joint Encoding

We define a joint encoding J of the images which
contains both embedded images (E1,E2), a mu-
tated combination (M), or both. We consider
as possible mutations M ∈ {E1 + E2,E1 −
E2,max(E1,E2),E1�E2}. We try these encod-
ing variants to explore whether simple mutations
can effectively combine the image representations.

3.3 Comparative Module

Given the joint encoding of the images (J), we
would like to represent the differences in feature
space (C) in order to generate comparative de-
scriptions. We explore two vari ants at this stage.
The first is a direct passthrough of the joint en-
coding (C = J). This is analogous to “standard”
CNN+LSTM architectures, which embed images
and pass them directly to an LSTM for decod-
ing. Because we try different joint encodings, a
passthrough here also allows us to study their ef-
fects in isolation.

Our second variant is an N -layer Transformer
encoder. This provides an additional self-attentive
mutations over the latent representations J. Each
layer contains a multi-headed attention mecha-
nism (ATTNMH). The intent is that self-attention
in Transformer encoder layers will guide compar-
isons across the joint image encoding.

Denoting LN as Layer Norm and FF as Feed For-
ward, with Ci as the output of the ith layer of the
Transformer encoder, C0 = J, and C = CN :

CH
i = LN(Ci−1 + ATTNMH(Ci−1))

Ci = LN(CH
i + FF(CH

i ))
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3.4 Decoder

We use an N -layer Transformer decoder architec-
ture to produce distributions over output tokens.
The Transformer decoder is similar to an encoder,
but it contains an intermediary multi-headed atten-
tion which has access to the encoder’s output C at
every time step.

DH1
i = LN(X+ ATTNMASK,MH(X))

DH2
i = LN(DH1

i + ATTNMH(D
H1
i ,C))

Di = LN(DH2
i + FF(DH2

i ))

Here we denote the text observed during training
as X, which is modulated with a position-based
encoding and masked in the first multi-headed at-
tention.

4 Experiments

We train the Neural Naturalist model to produce
descriptions of the differences between images
in the Birds-to-Words dataset. We partition the
dataset into train (80%), val (10%), and test (10%)
sections by splitting based on the pivot images i1.
This ensures i1 species are unique across the dif-
ferent splits.

We provide model hyperparameters and opti-
mization details in the supplementary material.

4.1 Baselines and Variants

The most frequent paragraph baseline produces
only the most observed description in the train-
ing data, which is that the two animals appear to
be exactly the same. Text-Only samples captions
from the training data according to their empiri-
cal distribution. Nearest Neighbor embeds both
images and computes the lowest total L2 distance
to a training set pair, sampling a caption from
it. We include two standard neural baselines,
CNN (+ Attention) + LSTM, which concatenate
the images embeddings, optionally perform atten-
tion, and decode with an LSTM. The main model
variants we consider are a simple joint encoding
(J = 〈E1,E2〉), no comparative module (C = J),
a small (1-layer) decoder, and our full Neural Nat-
uralist model. We also try several other combina-
tions of joint encoding and comparative module,
which we report separately.

4.2 Quantitative Results
Automatic Metrics We evaluate our model

using three machine-graded text metrics: BLEU-
4 (Papineni et al., 2002), ROUGE-L (Lin, 2004),
and CIDEr-D (Vedantam et al., 2015). Each gen-
erated paragraph is compared to all five reference
paragraphs.

For human performance, we use a one-vs-rest
scheme to hold one reference paragraph out and
compute its metric using the other four. We av-
erage this score across twenty-five runs over the
entire split in question.

Results using these metrics are given in Table 2
for the main baselines and variants, and in Table 3
for the extended model variants. We observe im-
provement across BLEU-4 and ROUGE-L scores
compared to baselines. Curiously, we observe
that the CIDEr-D metric is susceptible to com-
mon patterns in the data; our model, when stopped
at its highest CIDEr-D score, outputs a variant
of, “these animals appear exactly the same” for
95% of paragraphs, nearly mimicking the behavior
of the most frequent paragraph (Freq.) baseline.
The corpus-level behavior of CIDEr-D gives these
outputs a higher score. We observed anecdotally
higher quality outputs correlated with ROUGE-L
score.

Human Evaluation To verify our observa-
tions about model quality, we also perform a hu-
man evaluation of the generated paragraphs. We
sample 120 instances from the test set, taking
twenty each from the six categories for choosing
comparative images (visual similarity in embed-
ding space, plus five taxonomic distances). We
provide annotators with the two images in a ran-
dom order, along with the output from the model at
hand. Annotators must decide which image con-
tains Animal 1, and which contains Animal 2, or
they may say that there is no way to tell (e.g., for
a description like “both look exactly the same”).

We collect three annotations per datum, and
score a decision only if ≥ 2/3 annotators made
that choice. A model receives +1 point if anno-
tators decide correctly, 0 if they cannot decide or
agree there is no way to tell, and -1 point if they
decide incorrectly (confidently label the images
backwards). This scheme penalizes a model for
confidently writing incorrect descriptions. The to-
tal score is then normalized to the range [−1, 1].
Note that Human uses one of the five gold para-
graphs sampled at random.
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Dev Test

BLEU-4 ROUGE-L CIDEr-D BLEU-4 ROUGE-L CIDEr-D

Most Frequent 0.20 0.31 0.42 0.20 0.30 0.43
Text-Only 0.14 0.36 0.05 0.14 0.36 0.07
Nearest Neighbor 0.18 0.40 0.15 0.14 0.36 0.06

CNN + LSTM (Vinyals et al., 2015) 0.08 0.24 0.02 0.08 0.25 0.02
CNN + Attn + LSTM (Xu et al., 2015) 0.08 0.25 0.02 0.08 0.25 0.01

Neural Naturalist – Simple Joint Encoding 0.23 0.44 0.23 - - -
Neural Naturalist – No Comparative Module 0.09 0.27 0.09 - - -
Neural Naturalist – Small Decoder 0.22 0.42 0.25 - - -
Neural Naturalist – Full 0.24 0.46 0.28 0.22 0.43 0.25

Human 0.26 +/- 0.02 0.47 +/- 0.01 0.39 +/- 0.04 0.27 +/- 0.01 0.47 +/- 0.01 0.42 +/- 0.03

Table 2: Experimental results for comparative paragraph generation on the proposed dataset. For human captions,
mean and standard deviation are given for a one-vs-rest scheme across twenty-five runs. The Neural Natural-
ist model benefits from a strong joint encoding and Transformer-based comparative module, achieving the highest
BLEU-4 and ROUGE-L scores. We observed that CIDEr-D scores had little correlation with description quality.

Results for this experiment are shown in Ta-
ble 4. In this measure, we see the frequency and
text-only baselines now fall flat, as expected. The
frequency baseline never receives any points, and
the text-only baseline is often penalized for incor-
rectly guessing. Our model is successful at mak-
ing distinctions between visually distinct species
(GENUS column and ones further right), which is
near the challenge level of current fine-grained vi-
sual classification tasks. However, it struggles on
the two data subsets with highest visual similarity
(VISUAL, SPECIES). The significant gap to hu-
man performance in these columns indicates ultra
fine-grained distinctions are still possible for hu-
mans to describe, but a challenge for current mod-
els to capture.

4.3 Qualitative Analysis
In Figure 5, we present several examples of the
model output for pairs of images in the dev set,
along with one of the five reference paragraphs. In
the following section, we split an analysis of the
model into two parts: largely positive findings, as
well as common error cases.

Positive findings We find that the model ex-
hibits dynamic granularity, by which we mean
that it adjusts the magnitude of the descriptions
based on the scale of differences between the two
animals. If two animals are quite similar, it gen-
erates fine-grained descriptions such as, “Animal
2 has a slightly more curved beak than Animal 1,”
or “Animal 1 is more iridescent than Animal 2.” If
instead the two animals are very different, it will
generate text describing larger-scale differences,
like, “Animal 1 has a much longer neck than Ani-

mal 2,” or “Animal 1 is mostly white with a black
head. Animal 2 is almost completely yellow.”

Error analysis We also observe several pat-
terns in the model’s shortcomings. The most
prominent error case is that the model will some-
times hallucinate differences that do not exist (Fig-
ure 5, bottom row). These range from pointing out
significant changes that are missing (e.g., “a black
head” where there is none), to clawing at subtle
distinctions where there are none (e.g., “[its] col-
ors are brighter . . . and it] is a bit bigger”). We
suspect that the model has learned some associ-
ations between common features in animals, and
will sometimes favor these associations over vi-
sual evidence.

We also observe the model sometimes swaps
which features are attributed to which animal.
This is partially observed in Figure 5 (bottom row,
left side), where the “black head” actually be-
longs to Animal 1, not Animal 2. We suspect that
mixing up references may be a trade-off for the
representational power of attending over both im-
ages; there is no explicit bookkeeping mechanism
to enforce which phrases refer to which feature
comparisons in each image.

5 Related Work

Employing visual comparisons to elicit focused
natural language observations was proposed by
(Maji, 2012), and later investigated in the context
of crowdsourcing by (Zou et al., 2015). We take
inspiration from these works.

Previous work has collected natural language
datasets captioning photographs of birds: CUB
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Joint Encoding Decoding
Algorithm

Dev

i1 i2 − + max � Comparative Module Decoder BLEU-4 ROUGE-L CIDEr-D

X X

6-Layer
Transformer

6-Layer
Transformer

Beamsearch

0.23 0.44 0.23
X 0.23 0.45 0.27

X 0.24 0.43 0.28
X 0.23 0.43 0.24

X 0.24 0.46 0.28
X X X 0.22 0.44 0.22
X X X 0.22 0.42 0.25
X X X 0.21 0.42 0.22
X X X 0.22 0.43 0.23
X X X X X X 0.21 0.43 0.20

X Passthrough
6-Layer

Transformer
Beamsearch

0.00 0.02 0.00
X 1-L Transformer 0.24 0.44 0.27
X 3-L Transformer 0.24 0.44 0.27
X 6-L Transformer 0.24 0.46 0.28

X X X Passthrough
6-Layer

Transformer
Beamsearch

0.09 0.27 0.09
X X X 1-L Transformer 0.24 0.43 0.24
X X X 3-L Transformer 0.22 0.42 0.26
X X X 6-L Transformer 0.22 0.44 0.22

Table 3: Variants of the joint encoding and comparative module for the Neural Naturalist model. We find that
the elementwise mutation (�) performs the best of all joint encodings, and that using a Transformer encoder as a
comparative module greatly improves model performance.

VISUAL SPECIES GENUS FAMILY ORDER CLASS

Freq. 0.00 0.00 0.00 0.00 0.00 0.00
Text-Only 0.00 -0.10 -0.05 0.00 0.15 -0.15
Ours 0.10 -0.10 0.35 0.40 0.45 0.55

Human 0.55 0.55 0.85 1.00 1.00 1.00

Table 4: Human evaluation results on 120 test set sam-
ples, twenty per column. Scale: -1 (perfectly wrong)
to 1 (perfectly correct). Columns are ordered left-
to-right by increasing distance. Our model outper-
forms baselines from intra-Genus distinctions onward,
though highly similar comparisons still prove difficult.

Captions (Reed et al., 2016) and CUB-Justify
(Vedantam et al., 2017) are both language anno-
tations on top of the CUB-2011 dataset of bird
photographs (Wah et al., 2011). In addition to de-
scribing two photos instead of one, the language in
our dataset is more complex by comparison, con-
taining a diversity of comparative structures and
implied semantics.

Conceptually, our paper offers a complemen-
tary approach to works that generate single-image
class-discriminative or image-discriminative cap-
tions (Hendricks et al., 2016; Vedantam et al.,
2017). Rather than discriminative captioning, we
focus on comparative language as a means for
bridging the gap between varying granularities of
visual diversity.

Methodologically, our work is most closely re-
lated to the Spot-the-diff dataset (Jhamtani and
Berg-Kirkpatrick, 2018). While dataset captions
two images with only a small section of pixels
that change (surveillance footage), we consider
image pairs with no pixel overlap, which motivates
our stratified sampling approach for drawing good
comparisons.

6 Conclusion

We present the new Birds-to-Words dataset and
Neural Naturalist model for generating compar-
ative explanations of visual distinctions. The
dataset—with paragraph-length, adaptively de-
tailed descriptions using everyday language—
reflects how humans describe fine-grained visual
differences. We hope this line of research will pro-
vide assistance to humans in fine-grained classifi-
cation domains like citizen science.
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Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Erik Murphy-Chutorian and Mohan Manubhai Trivedi.
2009. Head pose estimation in computer vision: A
survey. IEEE transactions on pattern analysis and
machine intelligence, 31(4):607–626.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt
Schiele. 2016. Learning deep representations of
fine-grained visual descriptions. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 49–58.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 2556–2565.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke,
and Alexander A Alemi. 2017. Inception-v4,
inception-resnet and the impact of residual connec-
tions on learning. In Thirty-First AAAI Conference
on Artificial Intelligence.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 251–260.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recog-
nition, pages 4566–4575.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 3156–3164.

Catherine Wah, Steve Branson, Peter Welinder, Pietro
Perona, and Serge Belongie. 2011. The caltech-ucsd
birds-200-2011 dataset.

Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, San-
jiv Kumar, Daniel N Holtmann-Rice, David Simcha,
and Felix Yu. 2017. Multiscale quantization for fast
similarity search. In Advances in Neural Informa-
tion Processing Systems, pages 5745–5755.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In International conference on machine learn-
ing, pages 2048–2057.

James Y Zou, Kamalika Chaudhuri, and Adam Tau-
man Kalai. 2015. Crowdsourcing feature discovery
via adaptively chosen comparisons. arXiv preprint
arXiv:1504.00064.


